pentacoordinate resulting in coordination spheres with distorted square-pyramid geometries with non-bridging Cl atoms at the apex of the pyramid. The distortion is a result of the constraints imposed by the formation of a five-membered ring on one side due to the coordination of the metal ion by two N atoms. The axial bond distances of 2.523 (2) \AA for $\mathrm{Cu}-\mathrm{Cl}(1)$ and 2.524 (2) \AA for $\mathrm{Cu}(2)-\mathrm{Cl}(2)$ are significantly longer than the range of 2.27 to $2.35 \AA$ found for non-axial $\mathrm{Cu}-\mathrm{Cl}$ distances (Klein, Trefonas, O'Connor \& Majeste, 1981; Swank, Needham \& Willett, 1979; Roundhill, Roundhill, Bloomquist, Landee, Willett, Dooley \& Gray, 1979) but significantly shorter than the $\mathrm{Cu}-\mathrm{Cl}$ bridging bonds of 2.70 to $3.19 \AA$ found in $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ bridging systems (Willett \& Rundle, 1964; Hodgson, Hale \& Hatfield, 1971).

The non-bridging Cl atoms are coordinated on opposite sides of the molecule. Each $\mathrm{Cu}^{\mathrm{II}}$ ion is displaced from the plane in the direction of the non-bridging Cl atom which is coordinated to it $[\mathrm{Cu}(1)$ $-0.411(5) \AA$ out of plane and $\mathrm{Cu}(2)+0.332(5) \AA$ out of plane], as can be seen from the packing diagram in Fig. 2. The ligand is near planar except for slight rotations of the pyridine ring planes $[\mathrm{N}(1) \mathrm{C}(1) \mathrm{C}(2)$ $C(3) C(4) C(5)$ and $N(4) C(16) C(17) C(18) C(19) C(20)]$ about the $C(5)-C(6)$ bond and the $C(15)-C(16)$ bond. The resulting dihedral angles between pyridine ring planes and the rest of the ligand are 173.5 (7) and 166.3 (7) ${ }^{\circ}$ respectively.

An intermolecular hydrogen-bond network results from the two water molecules of hydration found in the unit cell. Both are hydrogen-bonded to $\mathrm{Cl}(2)$ and also to a $\mathrm{Cl}(1)$ translated by one unit cell along the a axis. The hydrogen bonds linking two adjacent binuclear complexes result in an infinite linear chain of binuclear

Fig. 2. Stereoview of the molecular-packing diagram showing the intermolecular hydrogen-bond network.
molecules. The water $\mathrm{O}-\mathrm{Cl}$ distances are somewhat longer $[\mathrm{Cl}(1)-\mathrm{O}(2) 3.265(6), \mathrm{Cl}(1)-\mathrm{O}(3) 3.293$ (8) \AA and $\mathrm{Cl}(2)-\mathrm{O}(2) 3.266(6), \mathrm{Cl}(2)-\mathrm{O}$ (3) $3 \cdot 199$ (6) $\AA]$ than the $\mathrm{Cl}-\mathrm{O}$ hydrogen-bond distances reported in the literature [2.99-3.05 (6) \AA] (International Tables for X-ray Crystallography, 1968).

References

Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-147,
Hodgson, D. J., Hale, P. K. \& Hatfield, W. E. (1971). Inorg. Chem. 10, 1061-1067.
International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Klein, C. L., Trefonas, L. M., O’Connor, C. J. \& Majeste, R. J. (1981). Cryst. Struct. Commun. 10, 891-894.

Roundhil, S. G. N., Roundhill, D. M., Bloompuist, D. R., Landee, C., Willett, R. D., Dooley, D. M. \& Gray, H. B. (1979). Inorg. Chem. 18, 831-835.

Swank, D. D., Needham, G. F. \& Willett, R. D. (1979). Inorg. Chem. 18, 761-765.
Willett, R. D. \& Rundle, R. E. (1964). J. Chem. Phys. 40, 838-847.

1,3-Diethoxy-1,2;1,4;2,3,4:2,3;3,4;1,2,4-bis- μ_{4}-\{[2-hydroxymethyl-2-methyl-1,3-propanediolato(3-)]- $\left.\mu-O, \mu-O^{\prime}, \mu-O^{\prime \prime}\right\}$-tetrakis[cis-dioxomolybdenum(VI)], $\mathrm{C}_{14} \mathrm{H}_{28} \mathbf{M o}_{4} \mathrm{O}_{16}$

By A. J. Wilson, Ward T. Robinson and C. J. Wilkins
Chemistry Department, University of Canterbury, Christchurch, New Zealand

(Received 19 May 1982; accepted 1 October 1982)

Abstract

M_{r}=836 \cdot 1\), triclinic, $P \overline{1}, a=8.500$ (1), $b=9.581$ (1),$\quad c=7.903$ (1) $\AA, \quad \alpha=103.16$ (1), $\quad \beta=$ 103.07 (1), $\gamma=100.41(2)^{\circ}, \quad V=591.90 \AA^{3}, \quad D_{o}=$ $2.34, \quad D_{x}=2.35 \mathrm{Mg} \mathrm{m}^{-3}, \quad Z=1, \quad \lambda(\mathrm{Cu} K \alpha)=$ $1.5418 \AA, \mu(\mathrm{Cu} K \alpha)=18.548 \mathrm{~mm}^{-1}, R=0.031$ for 1438 observed reflections. In this complex the four Mo coordination centres are of two kinds within one

crystallographically centrosymmetric molecule. They are linked by a system of double and triple bridges formed by the O atoms of the triply deprotonated 2-hydroxymethyl-2-methyl-1,3-propanediol ligands. For one pair of Mo atoms this bridging itself provides six-coordination, but each Mo atom of the other pair carries an ethoxy group to complete the coordination.
(C) 1983 International Union of Crystallography

Introduction. 2-Hydroxymethyl-2-methyl-1,3-propanediol, $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3}$, or trimethylolethane (trianion tme), forms an $\mathrm{Mo}^{{ }^{\mathrm{VI}}}$ complex of composition MoO_{2} (Htme) (Knobler, Penfold, Robinson, Wilkins \& Yong, 1980). Prolonged extraction of this compound with dry ethanol (Hider \& Wilkins, 1983) causes elimination of one-half of the ligand to give a crystalline ethoxy derivative of empirical composition $\left(\mathrm{MoO}_{2}\right)_{2}(\mathrm{tme})\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)$ which is stable in air. The infrared spectrum indicated bridging by ligand O , and the presence of MoO_{2} cores in more than one environment. The crystal structure shows the molecule to be centrosymmetric, with a doubled formula $\left[\left(\mathrm{MoO}_{2}\right)_{4}(\mathrm{tme})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2}\right.$].

Experimental. Crystal $0.86 \times 0.106 \times 0.083 \mathrm{~mm}$, density measured by flotation in $\mathrm{CCl}_{4}+\mathrm{CHBr}_{3}$; X-ray photographs consistent with the triclinic crystal system and the analysis confirmed the space group $P \mathrm{I}$; Hilger \& Watts four-circle diffractometer, Ni-filtered $\mathrm{Cu} K \alpha$ radiation, 12 reflections used to determine lattice parameters, $\theta-2 \theta$ scan technique, $2 \theta_{\max }=114^{\circ}(h$, $0 \rightarrow 9 ; k, 10 \rightarrow-10 ; l, 8 \rightarrow-8), 1616$ reflections recorded, 1568 unique, 1438 with $I>3 \sigma(I)$ used in the structure refinement, 143 unobserved; absorption corrections applied, maximum and minimum values for the correction factors being 6.10 and 3.38 ; no intensity variation for three standard reflections.

Coordinates of the Mo atoms, obtained from the Patterson function, showed there to be a group of four within the cell. The remaining 15 crystallographically independent non-hydrogen atoms were located from electron density maps. H atoms were not located, but were introduced as members of rigid methyl and methylene groups constrained so that $\mathrm{C}-\mathrm{H}=1.0 \AA$. Following usual procedures (Countryman \& Penfold, 1972) refinement of 88 parameters converged at $\quad R(F)=0.031, \quad R_{w}=0.033 \quad\left\{w=1 /\left[\sigma^{2}(F)+\right.\right.$ $\left.\left.0.000112 F^{2}\right]\right\} ; F(000)=408$. Anisotropic thermal parameters assigned only to the Mo atoms, methyl and methylene H -atom temperature factors grouped separately for refinement purposes. There was evidence for secondary extinction amongst some low-angle reflections and so an isotropic extinction parameter (0.00943) was refined. Final difference Fourier maps showed no regions of abnormally high electron density (max. $\mathrm{N} 0.5 \mathrm{e}^{-3}$; min. $\mathrm{N}-0.5 \mathrm{e} \AA^{-3}$); ratio of maximum least-squares shift to error ~ 0.1 for non-H atoms; intensity data processed using programs HILGOUT (based on DRED by J. F. Blount and PICKOUT by R. J. Doedens) and $A B S O R B$ (a major revision by L. K. Templeton and D. Templeton of the program $A G N O S T$, installed locally by A. Zalkin); structure solution and refinement and geometry calculations made using programs SHELX (Sheldrick, 1976) and GEOM (S. Motherwell); diagrams produced using ORTEP II (Johnson, 1976).

Discussion. Positional and thermal parameters are listed in Table 1,* and selected interatomic distances and bond angles in Table 2.

The four coplanar Mo atoms in the molecule are linked entirely by a close-knit network of ligand-O, O_{l}, bridges, as shown by the darkened lines in Fig. 1. The atoms $O(1), O(2)$ [likewise $O\left(1^{\prime}\right), O\left(2^{\prime}\right)$ from the second tme ligand] each form a bridge between two Mo

[^0]Table 1. Atomic coordinates and thermal parameters $\left(\times 10^{3}\right)$

	\boldsymbol{y}	\boldsymbol{y}	z	$U\left(\AA^{2}\right)^{*}$
$\mathrm{Mo}(1)$	$-70 \cdot 2(1)$	$35 \cdot 0(1)$	$207 \cdot 5(1)$	\dagger
$\mathrm{Mo}(2)$	$322 \cdot 0(1)$	$210 \cdot 4(1)$	$192 \cdot 3(1)$	\dagger
$\mathrm{O}(1)$	$274 \ddagger$	$-1 \ddagger$	$-4 \ddagger$	$30(1)$
$\mathrm{O}(2)$	170	49	296	$27(1)$
$\mathrm{O}(3)$	-49	-145	-26	$24(1)$
$\mathrm{O}(4)$	276	355	360	$37(1)$
$\mathrm{O}(5)$	-138	-93	307	$39(1)$
$\mathrm{O}(6)$	-90	198	328	$39(1)$
$\mathrm{O}(7)$	375	303	48	$45(2)$
$\mathrm{O}(8)$	500	182	310	$45(2)$
$\mathrm{C}(1)$	321	-128	48	$36(2)$
$\mathrm{C}(2)$	224	-83	327	$33(2)$
$\mathrm{C}(3)$	27	-259	29	$31(2)$
$\mathrm{C}(4)$	210	-196	148	$31(2)$
$\mathrm{C}(5)$	272	-326	196	$44(2)$
$\mathrm{C}(6)$	316	377	556	$43(2)$
$\mathrm{C}(7)$	216	477	633	$59(3)$

* Methylene H atoms were refined to a common U value 118 (18), and methyl H to 115 (17).
\dagger Anisotropic parameters for $\mathrm{Mo}(1)$ and $\mathrm{Mo}(2)$ respectively were: $U_{11}, 28(1), 25(1) ; U_{22}, 29(1), 29(1) ; U_{33}, 21(1), 31(1) ;$ $U_{23}, 6(1), 5(1) ; U_{13}, 11(1), 8(1) ; U_{12}, 7(1), 2(1)$.
\ddagger E.s.d.'s are 1×10^{-3} for all O and C atoms.

Table 2. Bond lengths (\AA) and selected angles $\left({ }^{\circ}\right)$

$\mathrm{Mo}(1)-\mathrm{O}\left(1^{\prime}\right) \quad 2$	2.001 (4)	$\mathrm{Mo}(2)-\mathrm{O}(8) \quad 1.688$	1.688 (5)
$\mathrm{Mo}(1)-\mathrm{O}(2) \quad 1$	1.972 (4)	$\mathrm{C}(1)-\mathrm{C}(4) \quad 1.517$	1.517 (10)
$\mathrm{Mo}(1)-\mathrm{O}(3) \quad 2$	2.287 (4)	$\mathrm{C}(1)-\mathrm{O}(1) \quad 1.463$	1.463 (9)
$\mathrm{Mo}(1)-\mathrm{O}(5) \quad 1$	1.683 (5)	$\mathrm{C}(2)-\mathrm{C}(4) \quad 1.538$	1.538 (10)
$\mathrm{Mo}(1)-\mathrm{O}(6) \quad 1$	1.689 (5)	$\mathrm{C}(2)-\mathrm{O}(2) \quad 1.465$	1.465 (8)
$\mathrm{Mo}(2)-\mathrm{O}(1) \quad 2$	2.157 (4)	C(3)-C(4) 1.553	1.553 (10)
$\mathrm{Mo}(2)-\mathrm{O}(2) \quad 2$	2.256 (4)	$\mathrm{C}(3)-\mathrm{O}(3) \quad 1.462$	1.462 (8)
$\mathrm{Mo}(2)-\mathrm{O}\left(3^{\prime}\right) \quad 2$	2.282 (4)	$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.527$	1.527 (10)
$\mathrm{Mo}(2)-\mathrm{O}(4) \quad 1$	1.855 (5)	$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.505$	1.505 (12)
$\mathrm{Mo}(2)-\mathrm{O}(7) \quad 1$	1.688 (5)	$\mathrm{C}(6)-\mathrm{O}(4) \quad 1.464$	1.464 (9)
$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{O}(2)$	75.1(2)	$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}\left(3^{\prime}\right)$	71.4 (2)
$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{O}\left(3^{\prime}\right)$) $71.2(2)$	$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(5)$	91.0 (2)
$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{O}(4)$	156.4 (2)	$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(6)$	161.3 (2)
$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{O}(7)$	92.2 (2)	$\mathrm{O}(5)-\mathrm{Mo}(1)-\mathrm{O}(6)$	106.0 (2)
$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{O}(8)$	90.4 (2)	$\mathrm{Mo}\left(1^{\prime}\right)-\mathrm{O}(1)-\mathrm{Mo}(2)$	111.6 (2)
$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{O}\left(3^{\prime}\right)$) $69.6(2)$	$\mathrm{Mo}(1)-\mathrm{O}(2)-\mathrm{Mo}(2)$	111.2 (2)
$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{O}(4)$	85.4 (2)	$\mathrm{Mo}(1)-\mathrm{O}\left(3^{\prime}\right)-\mathrm{Mo}(2)$	$100 \cdot 2$ (2)
$\mathrm{O}(2)-\mathrm{Mo}(2)-\mathrm{O}(7)$	158.9 (2)	$\mathrm{Mo}(1)-\mathrm{O}(3)-\mathrm{Mo}\left(1^{\prime}\right)$	108.6 (2)
$\mathrm{O}\left(3^{\prime}\right)-\mathrm{Mo}(2)-\mathrm{O}(8)$) $155.7(2)$	$\mathrm{Mo}\left(1^{\prime}\right)-\mathrm{O}(1)-\mathrm{C}(1)$	119.0 (4)
$\mathrm{O}(7)-\mathrm{Mo}(2)-\mathrm{O}(8)$	106.3 (3)	$\mathrm{Mo}\left(1^{\prime}\right)-\mathrm{O}(3)-\mathrm{C}(3)$	114.6 (4)
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{O}\left(1^{\prime}\right)$) $150.5(2)$	$\mathrm{Mo}(1)-\mathrm{O}(2)-\mathrm{C}(2)$	119.2 (4)
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{O}\left(3^{\prime}\right)$) 74.9 (2)	$\mathrm{Mo}(2)-\mathrm{O}(2)-\mathrm{C}(2)$	120.7 (4)
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{O}(5)$	97.3 (2)	$\mathrm{Mo}(2)-\mathrm{O}(4)-\mathrm{C}(6)$	126.6 (4)
$\mathrm{O}(2)-\mathrm{Mo}(1)-\mathrm{O}(6)$	102.7 (2)	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{O}(1)$	113.2 (4)

atoms (described as 'double bridging') while $\mathrm{O}(3)$ and $O\left(3^{\prime}\right)$ each span three Mo atoms ('triple bridging'). These bridges provide octahedral coordination for one pair of Mo atoms, but for the second pair sixcoordination is completed by non-bridging ethoxy groups which also give overall charge balance. Thus $\mathrm{Mo}(1)$ is coordinated with the two double-bridging atoms $O\left(1^{\prime}\right)$ and $\mathrm{O}(2)$, the two triple-bridging atoms $O(3)$ and $O\left(3^{\prime}\right)$, and the terminal atoms $O(5)$ and $O(6)$ of the cis-dioxo core. $\mathrm{Mo}(2)$ is linked to the doublebridging atoms $\mathrm{O}(1)$ and $\mathrm{O}(2)$, the triple-bridging $O\left(3^{\prime}\right)$, the ethoxy $O(4)$, and $O(7)$ and $O(8)$ of the core. Upon coordination, the ligand develops three sixmembered chelating rings, each in a chair configuration providing bonding through the O pairs towards different Mo centres. The rings formed by the lower ligand in Fig. 1 are thus: $\mathrm{Mo}(2)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(4)-$ $\mathrm{C}(2)-\mathrm{O}(2), \quad \mathrm{Mo}\left(1^{\prime}\right)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(3)$ and $\mathrm{Mo}(1)-\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(3)$. In addition, a bond from the triple-bridging $O(3)$ extends to the fourth Mo atom, $\mathrm{Mo}\left(2^{\prime}\right)$.

The $\mathrm{Mo}-\mathrm{O}_{l}$ bond lengths to the coordinated tme fall into three groups (Table 3), which show the usual correlation with the nature of the trans groups (Schröder, 1975). The long bonds to triple-bridging $\mathrm{O}(3)$ and $\mathrm{O}\left(3^{\prime}\right)$ lie opposite terminal O atoms. The double bridges are unsymmetrical; thus, for the $\mathrm{Mo}(1)-\mathrm{O}(2)-\mathrm{Mo}(2)$ bridge the longer arm, $\mathrm{Mo}(2)-\mathrm{O}(2)=2.256$ (4) \AA, is again trans to terminal O , but the shorter link, $\mathrm{Mo}(1)-\mathrm{O}(2)=1.972(4) \dot{A}$, is trans to the bond $\mathrm{Mo}(1)-\mathrm{O}\left(1^{\prime}\right)$ of its own type. With

Fig. 1. A perspective view of one molecule of $\left[\left(\mathrm{MoO}_{2}\right)_{4}(\mathrm{tme})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2}\right]$. Primed atoms are related to the corresponding unprimed ones by the crystallographic centre of symmetry.

Table 3. Mo-O bond lengths (\AA) in relation to the trans group

		trans group
$\mathrm{Mo}(1)-\mathrm{O}\left(1^{\prime}\right), \mathrm{Mo}(1)-\mathrm{O}(2)$	$1.97-2.00$	Bridging O
$\mathrm{Mo}(2)-\mathrm{O}(1)$	$2 \cdot 16$	Non-bridging ethoxy
$\mathrm{Mo}(1)-\mathrm{O}(3), \mathrm{Mo}(2)-\mathrm{O}(2)$,	$2.26-2.28$	Terminal O
$\mathrm{Mo}(2)-\mathrm{O}\left(3^{\prime}\right)$		

the $\mathrm{Mo}\left(1^{\prime}\right)-\mathrm{O}(1)-\mathrm{Mo}(2)$ bridge the longer arm, $\mathrm{Mo}(2)-\mathrm{O}(1)=2.157(4) \AA$, is opposite the ethoxy $\mathrm{O}(4)$. The intermediate trans-lengthening influence of the ethoxy group affords evidence of an intermediate π-electron density in its bond to Mo. The ethoxy bond length itself, $\operatorname{Mo}(2)-\mathrm{O}(4)=1.855(5) \AA$, is close to that of a non-bridging isopropoxy group, $1.865 \AA$ in $\mathrm{Mo}_{6} \mathrm{O}_{10}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{6}$ (Chisholm, Folting, Huffman \& Kirkpatrick, 1982).
The coordination behaviour of the ligand may be compared with that of the simpler $2,2^{\prime}$-dimethyl-1,3-propanediol (neopentylglycol, dianion npg). In the npg complex $\left[\left\{\mathrm{MoO}_{2}(\mathrm{npg}) \mathrm{OH}_{2}\right\}_{2}\right]$ only one of the O atoms of the chelating group engages in ligand bridging (Chew \& Penfold, 1975), whereas in the present compound the ligand configuration is such that each of the three O atoms participates in the bridging to form a more highly condensed structure. The $\mathrm{Mo}(1) \cdots \mathrm{Mo}(2)$ and $\operatorname{Mo}\left(1^{\prime}\right) \cdots \mathrm{Mo}(2)$ distances, $3.493(1)$ and 3.440 (1) \AA respectively, are close to Mo \cdots Mo in the binuclear npg complex, viz $3.45 \AA$ Á, but $\operatorname{Mo}(1) \cdots \operatorname{Mo}\left(1^{\prime}\right)$ at 3.700 (1) \AA is longer since the latter pair are linked only through the longer bonds to the triple-bridging $O(3)$ and $O\left(3^{\prime}\right)$.

We thank Mr Richard Hider for providing samples of the compound, and acknowledge also assistance from the New Zealand Universities Research Committee for grants towards provision of equipment.

References

Chew, C. K. \& Penfold, B. R. (1975). J. Cryst. Mol. Struct. 5, 413-421.
Chisholm, M. H., Folting, K., Huffman, J. C. \& Kirkpatrick, C. C. (1982). Chem. Commun. pp. 189-190.

Countryman, R. \& Penfold, B. R. (1972). J. Cryst. Mol. Struct. 2, 281-290.
Hider, R. N. \& Wilkins, C. J. (1983). In preparation.
Johnson, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Knobler, C. B., Penfold, B. R., Robinson, W. T., Wilkins, C. J. \& Yong, S. H. (1980). J. Chem. Soc. Dalton Trans. pp. 248-252.
Schröder, F. A. (1975). Acta Cryst. B31, 2294-2309.
Sheldrick, G. M. (1976). SHELX. A program for crystal structure determination. Univ. of Cambridge, England.

[^0]: * Lists of structure factors and hydrogen-atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38127 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

